blob: 0ce5424efb411f93e654a3fb003dd4d9d4af370c [file] [log] [blame] [edit]
# Default values for a single rook-ceph cluster
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
# -- Namespace of the main rook operator
operatorNamespace: rook-ceph
# -- The metadata.name of the CephCluster CR
# @default -- The same as the namespace
clusterName:
# -- Optional override of the target kubernetes version
kubeVersion:
# -- Cluster ceph.conf override
configOverride:
# configOverride: |
# [global]
# mon_allow_pool_delete = true
# osd_pool_default_size = 3
# osd_pool_default_min_size = 2
# Installs a debugging toolbox deployment
toolbox:
# -- Enable Ceph debugging pod deployment. See [toolbox](../Troubleshooting/ceph-toolbox.md)
enabled: false
# -- Toolbox image, defaults to the image used by the Ceph cluster
image: #quay.io/ceph/ceph:v18.2.2
# -- Toolbox tolerations
tolerations: []
# -- Toolbox affinity
affinity: {}
# -- Toolbox container security context
containerSecurityContext:
runAsNonRoot: true
runAsUser: 2016
runAsGroup: 2016
capabilities:
drop: ["ALL"]
# -- Toolbox resources
resources:
limits:
memory: "1Gi"
requests:
cpu: "100m"
memory: "128Mi"
# -- Set the priority class for the toolbox if desired
priorityClassName:
monitoring:
# -- Enable Prometheus integration, will also create necessary RBAC rules to allow Operator to create ServiceMonitors.
# Monitoring requires Prometheus to be pre-installed
enabled: false
# -- Whether to create the Prometheus rules for Ceph alerts
createPrometheusRules: false
# -- The namespace in which to create the prometheus rules, if different from the rook cluster namespace.
# If you have multiple rook-ceph clusters in the same k8s cluster, choose the same namespace (ideally, namespace with prometheus
# deployed) to set rulesNamespaceOverride for all the clusters. Otherwise, you will get duplicate alerts with multiple alert definitions.
rulesNamespaceOverride:
# Monitoring settings for external clusters:
# externalMgrEndpoints: <list of endpoints>
# externalMgrPrometheusPort: <port>
# Scrape interval for prometheus
# interval: 10s
# allow adding custom labels and annotations to the prometheus rule
prometheusRule:
# -- Labels applied to PrometheusRule
labels: {}
# -- Annotations applied to PrometheusRule
annotations: {}
# -- Create & use PSP resources. Set this to the same value as the rook-ceph chart.
pspEnable: false
# imagePullSecrets option allow to pull docker images from private docker registry. Option will be passed to all service accounts.
# imagePullSecrets:
# - name: my-registry-secret
# All values below are taken from the CephCluster CRD
# -- Cluster configuration.
# @default -- See [below](#ceph-cluster-spec)
cephClusterSpec:
# This cluster spec example is for a converged cluster where all the Ceph daemons are running locally,
# as in the host-based example (cluster.yaml). For a different configuration such as a
# PVC-based cluster (cluster-on-pvc.yaml), external cluster (cluster-external.yaml),
# or stretch cluster (cluster-stretched.yaml), replace this entire `cephClusterSpec`
# with the specs from those examples.
# For more details, check https://rook.io/docs/rook/v1.10/CRDs/Cluster/ceph-cluster-crd/
cephVersion:
# The container image used to launch the Ceph daemon pods (mon, mgr, osd, mds, rgw).
# v17 is Quincy, v18 is Reef.
# RECOMMENDATION: In production, use a specific version tag instead of the general v18 flag, which pulls the latest release and could result in different
# versions running within the cluster. See tags available at https://hub.docker.com/r/ceph/ceph/tags/.
# If you want to be more precise, you can always use a timestamp tag such as quay.io/ceph/ceph:v18.2.2-20240311
# This tag might not contain a new Ceph version, just security fixes from the underlying operating system, which will reduce vulnerabilities
image: quay.io/ceph/ceph:v18.2.2
# Whether to allow unsupported versions of Ceph. Currently `quincy`, and `reef` are supported.
# Future versions such as `squid` (v19) would require this to be set to `true`.
# Do not set to true in production.
allowUnsupported: false
# The path on the host where configuration files will be persisted. Must be specified.
# Important: if you reinstall the cluster, make sure you delete this directory from each host or else the mons will fail to start on the new cluster.
# In Minikube, the '/data' directory is configured to persist across reboots. Use "/data/rook" in Minikube environment.
dataDirHostPath: /var/lib/rook
# Whether or not upgrade should continue even if a check fails
# This means Ceph's status could be degraded and we don't recommend upgrading but you might decide otherwise
# Use at your OWN risk
# To understand Rook's upgrade process of Ceph, read https://rook.io/docs/rook/v1.10/Upgrade/ceph-upgrade/
skipUpgradeChecks: false
# Whether or not continue if PGs are not clean during an upgrade
continueUpgradeAfterChecksEvenIfNotHealthy: false
# WaitTimeoutForHealthyOSDInMinutes defines the time (in minutes) the operator would wait before an OSD can be stopped for upgrade or restart.
# If the timeout exceeds and OSD is not ok to stop, then the operator would skip upgrade for the current OSD and proceed with the next one
# if `continueUpgradeAfterChecksEvenIfNotHealthy` is `false`. If `continueUpgradeAfterChecksEvenIfNotHealthy` is `true`, then operator would
# continue with the upgrade of an OSD even if its not ok to stop after the timeout. This timeout won't be applied if `skipUpgradeChecks` is `true`.
# The default wait timeout is 10 minutes.
waitTimeoutForHealthyOSDInMinutes: 10
# Whether or not requires PGs are clean before an OSD upgrade. If set to `true` OSD upgrade process won't start until PGs are healthy.
# This configuration will be ignored if `skipUpgradeChecks` is `true`.
# Default is false.
upgradeOSDRequiresHealthyPGs: false
mon:
# Set the number of mons to be started. Generally recommended to be 3.
# For highest availability, an odd number of mons should be specified.
count: 3
# The mons should be on unique nodes. For production, at least 3 nodes are recommended for this reason.
# Mons should only be allowed on the same node for test environments where data loss is acceptable.
allowMultiplePerNode: false
mgr:
# When higher availability of the mgr is needed, increase the count to 2.
# In that case, one mgr will be active and one in standby. When Ceph updates which
# mgr is active, Rook will update the mgr services to match the active mgr.
count: 2
allowMultiplePerNode: false
modules:
# List of modules to optionally enable or disable.
# Note the "dashboard" and "monitoring" modules are already configured by other settings in the cluster CR.
# - name: rook
# enabled: true
# enable the ceph dashboard for viewing cluster status
dashboard:
enabled: true
# serve the dashboard under a subpath (useful when you are accessing the dashboard via a reverse proxy)
# urlPrefix: /ceph-dashboard
# serve the dashboard at the given port.
# port: 8443
# Serve the dashboard using SSL (if using ingress to expose the dashboard and `ssl: true` you need to set
# the corresponding "backend protocol" annotation(s) for your ingress controller of choice)
ssl: true
# Network configuration, see: https://github.com/rook/rook/blob/v1.14.5/Documentation/CRDs/Cluster/ceph-cluster-crd.md#network-configuration-settings
network:
connections:
# Whether to encrypt the data in transit across the wire to prevent eavesdropping the data on the network.
# The default is false. When encryption is enabled, all communication between clients and Ceph daemons, or between Ceph daemons will be encrypted.
# When encryption is not enabled, clients still establish a strong initial authentication and data integrity is still validated with a crc check.
# IMPORTANT: Encryption requires the 5.11 kernel for the latest nbd and cephfs drivers. Alternatively for testing only,
# you can set the "mounter: rbd-nbd" in the rbd storage class, or "mounter: fuse" in the cephfs storage class.
# The nbd and fuse drivers are *not* recommended in production since restarting the csi driver pod will disconnect the volumes.
encryption:
enabled: false
# Whether to compress the data in transit across the wire. The default is false.
# Requires Ceph Quincy (v17) or newer. Also see the kernel requirements above for encryption.
compression:
enabled: false
# Whether to require communication over msgr2. If true, the msgr v1 port (6789) will be disabled
# and clients will be required to connect to the Ceph cluster with the v2 port (3300).
# Requires a kernel that supports msgr v2 (kernel 5.11 or CentOS 8.4 or newer).
requireMsgr2: false
# # enable host networking
# provider: host
# # EXPERIMENTAL: enable the Multus network provider
# provider: multus
# selectors:
# # The selector keys are required to be `public` and `cluster`.
# # Based on the configuration, the operator will do the following:
# # 1. if only the `public` selector key is specified both public_network and cluster_network Ceph settings will listen on that interface
# # 2. if both `public` and `cluster` selector keys are specified the first one will point to 'public_network' flag and the second one to 'cluster_network'
# #
# # In order to work, each selector value must match a NetworkAttachmentDefinition object in Multus
# #
# # public: public-conf --> NetworkAttachmentDefinition object name in Multus
# # cluster: cluster-conf --> NetworkAttachmentDefinition object name in Multus
# # Provide internet protocol version. IPv6, IPv4 or empty string are valid options. Empty string would mean IPv4
# ipFamily: "IPv6"
# # Ceph daemons to listen on both IPv4 and Ipv6 networks
# dualStack: false
# enable the crash collector for ceph daemon crash collection
crashCollector:
disable: false
# Uncomment daysToRetain to prune ceph crash entries older than the
# specified number of days.
# daysToRetain: 30
# enable log collector, daemons will log on files and rotate
logCollector:
enabled: true
periodicity: daily # one of: hourly, daily, weekly, monthly
maxLogSize: 500M # SUFFIX may be 'M' or 'G'. Must be at least 1M.
# automate [data cleanup process](https://github.com/rook/rook/blob/v1.14.5/Documentation/Storage-Configuration/ceph-teardown.md#delete-the-data-on-hosts) in cluster destruction.
cleanupPolicy:
# Since cluster cleanup is destructive to data, confirmation is required.
# To destroy all Rook data on hosts during uninstall, confirmation must be set to "yes-really-destroy-data".
# This value should only be set when the cluster is about to be deleted. After the confirmation is set,
# Rook will immediately stop configuring the cluster and only wait for the delete command.
# If the empty string is set, Rook will not destroy any data on hosts during uninstall.
confirmation: ""
# sanitizeDisks represents settings for sanitizing OSD disks on cluster deletion
sanitizeDisks:
# method indicates if the entire disk should be sanitized or simply ceph's metadata
# in both case, re-install is possible
# possible choices are 'complete' or 'quick' (default)
method: quick
# dataSource indicate where to get random bytes from to write on the disk
# possible choices are 'zero' (default) or 'random'
# using random sources will consume entropy from the system and will take much more time then the zero source
dataSource: zero
# iteration overwrite N times instead of the default (1)
# takes an integer value
iteration: 1
# allowUninstallWithVolumes defines how the uninstall should be performed
# If set to true, cephCluster deletion does not wait for the PVs to be deleted.
allowUninstallWithVolumes: false
# To control where various services will be scheduled by kubernetes, use the placement configuration sections below.
# The example under 'all' would have all services scheduled on kubernetes nodes labeled with 'role=storage-node' and
# tolerate taints with a key of 'storage-node'.
# placement:
# all:
# nodeAffinity:
# requiredDuringSchedulingIgnoredDuringExecution:
# nodeSelectorTerms:
# - matchExpressions:
# - key: role
# operator: In
# values:
# - storage-node
# podAffinity:
# podAntiAffinity:
# topologySpreadConstraints:
# tolerations:
# - key: storage-node
# operator: Exists
# # The above placement information can also be specified for mon, osd, and mgr components
# mon:
# # Monitor deployments may contain an anti-affinity rule for avoiding monitor
# # collocation on the same node. This is a required rule when host network is used
# # or when AllowMultiplePerNode is false. Otherwise this anti-affinity rule is a
# # preferred rule with weight: 50.
# osd:
# mgr:
# cleanup:
# annotations:
# all:
# mon:
# osd:
# cleanup:
# prepareosd:
# # If no mgr annotations are set, prometheus scrape annotations will be set by default.
# mgr:
# dashboard:
# labels:
# all:
# mon:
# osd:
# cleanup:
# mgr:
# prepareosd:
# # monitoring is a list of key-value pairs. It is injected into all the monitoring resources created by operator.
# # These labels can be passed as LabelSelector to Prometheus
# monitoring:
# dashboard:
resources:
mgr:
limits:
memory: "1Gi"
requests:
cpu: "500m"
memory: "512Mi"
mon:
limits:
memory: "2Gi"
requests:
cpu: "1000m"
memory: "1Gi"
osd:
limits:
memory: "4Gi"
requests:
cpu: "1000m"
memory: "4Gi"
prepareosd:
# limits: It is not recommended to set limits on the OSD prepare job
# since it's a one-time burst for memory that must be allowed to
# complete without an OOM kill. Note however that if a k8s
# limitRange guardrail is defined external to Rook, the lack of
# a limit here may result in a sync failure, in which case a
# limit should be added. 1200Mi may suffice for up to 15Ti
# OSDs ; for larger devices 2Gi may be required.
# cf. https://github.com/rook/rook/pull/11103
requests:
cpu: "500m"
memory: "50Mi"
mgr-sidecar:
limits:
memory: "100Mi"
requests:
cpu: "100m"
memory: "40Mi"
crashcollector:
limits:
memory: "60Mi"
requests:
cpu: "100m"
memory: "60Mi"
logcollector:
limits:
memory: "1Gi"
requests:
cpu: "100m"
memory: "100Mi"
cleanup:
limits:
memory: "1Gi"
requests:
cpu: "500m"
memory: "100Mi"
exporter:
limits:
memory: "128Mi"
requests:
cpu: "50m"
memory: "50Mi"
# The option to automatically remove OSDs that are out and are safe to destroy.
removeOSDsIfOutAndSafeToRemove: false
# priority classes to apply to ceph resources
priorityClassNames:
mon: system-node-critical
osd: system-node-critical
mgr: system-cluster-critical
storage: # cluster level storage configuration and selection
useAllNodes: true
useAllDevices: true
# deviceFilter:
# config:
# crushRoot: "custom-root" # specify a non-default root label for the CRUSH map
# metadataDevice: "md0" # specify a non-rotational storage so ceph-volume will use it as block db device of bluestore.
# databaseSizeMB: "1024" # uncomment if the disks are smaller than 100 GB
# osdsPerDevice: "1" # this value can be overridden at the node or device level
# encryptedDevice: "true" # the default value for this option is "false"
# # Individual nodes and their config can be specified as well, but 'useAllNodes' above must be set to false. Then, only the named
# # nodes below will be used as storage resources. Each node's 'name' field should match their 'kubernetes.io/hostname' label.
# nodes:
# - name: "172.17.4.201"
# devices: # specific devices to use for storage can be specified for each node
# - name: "sdb"
# - name: "nvme01" # multiple osds can be created on high performance devices
# config:
# osdsPerDevice: "5"
# - name: "/dev/disk/by-id/ata-ST4000DM004-XXXX" # devices can be specified using full udev paths
# config: # configuration can be specified at the node level which overrides the cluster level config
# - name: "172.17.4.301"
# deviceFilter: "^sd."
# The section for configuring management of daemon disruptions during upgrade or fencing.
disruptionManagement:
# If true, the operator will create and manage PodDisruptionBudgets for OSD, Mon, RGW, and MDS daemons. OSD PDBs are managed dynamically
# via the strategy outlined in the [design](https://github.com/rook/rook/blob/v1.14.5/design/ceph/ceph-managed-disruptionbudgets.md). The operator will
# block eviction of OSDs by default and unblock them safely when drains are detected.
managePodBudgets: true
# A duration in minutes that determines how long an entire failureDomain like `region/zone/host` will be held in `noout` (in addition to the
# default DOWN/OUT interval) when it is draining. This is only relevant when `managePodBudgets` is `true`. The default value is `30` minutes.
osdMaintenanceTimeout: 30
# A duration in minutes that the operator will wait for the placement groups to become healthy (active+clean) after a drain was completed and OSDs came back up.
# Operator will continue with the next drain if the timeout exceeds. It only works if `managePodBudgets` is `true`.
# No values or 0 means that the operator will wait until the placement groups are healthy before unblocking the next drain.
pgHealthCheckTimeout: 0
# Configure the healthcheck and liveness probes for ceph pods.
# Valid values for daemons are 'mon', 'osd', 'status'
healthCheck:
daemonHealth:
mon:
disabled: false
interval: 45s
osd:
disabled: false
interval: 60s
status:
disabled: false
interval: 60s
# Change pod liveness probe, it works for all mon, mgr, and osd pods.
livenessProbe:
mon:
disabled: false
mgr:
disabled: false
osd:
disabled: false
ingress:
# -- Enable an ingress for the ceph-dashboard
dashboard:
{}
# annotations:
# external-dns.alpha.kubernetes.io/hostname: dashboard.example.com
# nginx.ingress.kubernetes.io/rewrite-target: /ceph-dashboard/$2
# If the dashboard has ssl: true the following will make sure the NGINX Ingress controller can expose the dashboard correctly
# nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
# nginx.ingress.kubernetes.io/server-snippet: |
# proxy_ssl_verify off;
# host:
# name: dashboard.example.com
# path: "/ceph-dashboard(/|$)(.*)"
# tls:
# - hosts:
# - dashboard.example.com
# secretName: testsecret-tls
## Note: Only one of ingress class annotation or the `ingressClassName:` can be used at a time
## to set the ingress class
# ingressClassName: nginx
# -- A list of CephBlockPool configurations to deploy
# @default -- See [below](#ceph-block-pools)
cephBlockPools:
- name: ceph-blockpool
# see https://github.com/rook/rook/blob/v1.14.5/Documentation/CRDs/Block-Storage/ceph-block-pool-crd.md#spec for available configuration
spec:
failureDomain: host
replicated:
size: 3
# Enables collecting RBD per-image IO statistics by enabling dynamic OSD performance counters. Defaults to false.
# For reference: https://docs.ceph.com/docs/latest/mgr/prometheus/#rbd-io-statistics
# enableRBDStats: true
storageClass:
enabled: true
name: ceph-block
isDefault: true
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: "Immediate"
mountOptions: []
# see https://kubernetes.io/docs/concepts/storage/storage-classes/#allowed-topologies
allowedTopologies: []
# - matchLabelExpressions:
# - key: rook-ceph-role
# values:
# - storage-node
# see https://github.com/rook/rook/blob/v1.14.5/Documentation/Storage-Configuration/Block-Storage-RBD/block-storage.md#provision-storage for available configuration
parameters:
# (optional) mapOptions is a comma-separated list of map options.
# For krbd options refer
# https://docs.ceph.com/docs/latest/man/8/rbd/#kernel-rbd-krbd-options
# For nbd options refer
# https://docs.ceph.com/docs/latest/man/8/rbd-nbd/#options
# mapOptions: lock_on_read,queue_depth=1024
# (optional) unmapOptions is a comma-separated list of unmap options.
# For krbd options refer
# https://docs.ceph.com/docs/latest/man/8/rbd/#kernel-rbd-krbd-options
# For nbd options refer
# https://docs.ceph.com/docs/latest/man/8/rbd-nbd/#options
# unmapOptions: force
# RBD image format. Defaults to "2".
imageFormat: "2"
# RBD image features, equivalent to OR'd bitfield value: 63
# Available for imageFormat: "2". Older releases of CSI RBD
# support only the `layering` feature. The Linux kernel (KRBD) supports the
# full feature complement as of 5.4
imageFeatures: layering
# These secrets contain Ceph admin credentials.
csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner
csi.storage.k8s.io/provisioner-secret-namespace: "{{ .Release.Namespace }}"
csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner
csi.storage.k8s.io/controller-expand-secret-namespace: "{{ .Release.Namespace }}"
csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node
csi.storage.k8s.io/node-stage-secret-namespace: "{{ .Release.Namespace }}"
# Specify the filesystem type of the volume. If not specified, csi-provisioner
# will set default as `ext4`. Note that `xfs` is not recommended due to potential deadlock
# in hyperconverged settings where the volume is mounted on the same node as the osds.
csi.storage.k8s.io/fstype: ext4
# -- A list of CephFileSystem configurations to deploy
# @default -- See [below](#ceph-file-systems)
cephFileSystems:
- name: ceph-filesystem
# see https://github.com/rook/rook/blob/v1.14.5/Documentation/CRDs/Shared-Filesystem/ceph-filesystem-crd.md#filesystem-settings for available configuration
spec:
metadataPool:
replicated:
size: 3
dataPools:
- failureDomain: host
replicated:
size: 3
# Optional and highly recommended, 'data0' by default, see https://github.com/rook/rook/blob/v1.14.5/Documentation/CRDs/Shared-Filesystem/ceph-filesystem-crd.md#pools
name: data0
metadataServer:
activeCount: 1
activeStandby: true
resources:
limits:
memory: "4Gi"
requests:
cpu: "1000m"
memory: "4Gi"
priorityClassName: system-cluster-critical
storageClass:
enabled: true
isDefault: false
name: ceph-filesystem
# (Optional) specify a data pool to use, must be the name of one of the data pools above, 'data0' by default
pool: data0
reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: "Immediate"
mountOptions: []
# see https://github.com/rook/rook/blob/v1.14.5/Documentation/Storage-Configuration/Shared-Filesystem-CephFS/filesystem-storage.md#provision-storage for available configuration
parameters:
# The secrets contain Ceph admin credentials.
csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-provisioner
csi.storage.k8s.io/provisioner-secret-namespace: "{{ .Release.Namespace }}"
csi.storage.k8s.io/controller-expand-secret-name: rook-csi-cephfs-provisioner
csi.storage.k8s.io/controller-expand-secret-namespace: "{{ .Release.Namespace }}"
csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-node
csi.storage.k8s.io/node-stage-secret-namespace: "{{ .Release.Namespace }}"
# Specify the filesystem type of the volume. If not specified, csi-provisioner
# will set default as `ext4`. Note that `xfs` is not recommended due to potential deadlock
# in hyperconverged settings where the volume is mounted on the same node as the osds.
csi.storage.k8s.io/fstype: ext4
# -- Settings for the filesystem snapshot class
# @default -- See [CephFS Snapshots](../Storage-Configuration/Ceph-CSI/ceph-csi-snapshot.md#cephfs-snapshots)
cephFileSystemVolumeSnapshotClass:
enabled: false
name: ceph-filesystem
isDefault: true
deletionPolicy: Delete
annotations: {}
labels: {}
# see https://rook.io/docs/rook/v1.10/Storage-Configuration/Ceph-CSI/ceph-csi-snapshot/#cephfs-snapshots for available configuration
parameters: {}
# -- Settings for the block pool snapshot class
# @default -- See [RBD Snapshots](../Storage-Configuration/Ceph-CSI/ceph-csi-snapshot.md#rbd-snapshots)
cephBlockPoolsVolumeSnapshotClass:
enabled: false
name: ceph-block
isDefault: false
deletionPolicy: Delete
annotations: {}
labels: {}
# see https://rook.io/docs/rook/v1.10/Storage-Configuration/Ceph-CSI/ceph-csi-snapshot/#rbd-snapshots for available configuration
parameters: {}
# -- A list of CephObjectStore configurations to deploy
# @default -- See [below](#ceph-object-stores)
cephObjectStores:
- name: ceph-objectstore
# see https://github.com/rook/rook/blob/v1.14.5/Documentation/CRDs/Object-Storage/ceph-object-store-crd.md#object-store-settings for available configuration
spec:
metadataPool:
failureDomain: host
replicated:
size: 3
dataPool:
failureDomain: host
erasureCoded:
dataChunks: 2
codingChunks: 1
preservePoolsOnDelete: true
gateway:
port: 80
resources:
limits:
memory: "2Gi"
requests:
cpu: "1000m"
memory: "1Gi"
# securePort: 443
# sslCertificateRef:
instances: 1
priorityClassName: system-cluster-critical
storageClass:
enabled: true
name: ceph-bucket
reclaimPolicy: Delete
volumeBindingMode: "Immediate"
# see https://github.com/rook/rook/blob/v1.14.5/Documentation/Storage-Configuration/Object-Storage-RGW/ceph-object-bucket-claim.md#storageclass for available configuration
parameters:
# note: objectStoreNamespace and objectStoreName are configured by the chart
region: us-east-1
ingress:
# Enable an ingress for the ceph-objectstore
enabled: false
# annotations: {}
# host:
# name: objectstore.example.com
# path: /
# tls:
# - hosts:
# - objectstore.example.com
# secretName: ceph-objectstore-tls
# ingressClassName: nginx
## cephECBlockPools are disabled by default, please remove the comments and set desired values to enable it
## For erasure coded a replicated metadata pool is required.
## https://rook.io/docs/rook/latest/CRDs/Shared-Filesystem/ceph-filesystem-crd/#erasure-coded
#cephECBlockPools:
# - name: ec-pool
# spec:
# metadataPool:
# replicated:
# size: 2
# dataPool:
# failureDomain: osd
# erasureCoded:
# dataChunks: 2
# codingChunks: 1
# deviceClass: hdd
#
# parameters:
# # clusterID is the namespace where the rook cluster is running
# # If you change this namespace, also change the namespace below where the secret namespaces are defined
# clusterID: rook-ceph # namespace:cluster
# # (optional) mapOptions is a comma-separated list of map options.
# # For krbd options refer
# # https://docs.ceph.com/docs/latest/man/8/rbd/#kernel-rbd-krbd-options
# # For nbd options refer
# # https://docs.ceph.com/docs/latest/man/8/rbd-nbd/#options
# # mapOptions: lock_on_read,queue_depth=1024
#
# # (optional) unmapOptions is a comma-separated list of unmap options.
# # For krbd options refer
# # https://docs.ceph.com/docs/latest/man/8/rbd/#kernel-rbd-krbd-options
# # For nbd options refer
# # https://docs.ceph.com/docs/latest/man/8/rbd-nbd/#options
# # unmapOptions: force
#
# # RBD image format. Defaults to "2".
# imageFormat: "2"
#
# # RBD image features, equivalent to OR'd bitfield value: 63
# # Available for imageFormat: "2". Older releases of CSI RBD
# # support only the `layering` feature. The Linux kernel (KRBD) supports the
# # full feature complement as of 5.4
# # imageFeatures: layering,fast-diff,object-map,deep-flatten,exclusive-lock
# imageFeatures: layering
#
# storageClass:
# provisioner: rook-ceph.rbd.csi.ceph.com # csi-provisioner-name
# enabled: true
# name: rook-ceph-block
# isDefault: false
# allowVolumeExpansion: true
# reclaimPolicy: Delete
# -- CSI driver name prefix for cephfs, rbd and nfs.
# @default -- `namespace name where rook-ceph operator is deployed`
csiDriverNamePrefix: